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Abstract

Humans can feel and grasp efficiently in the dark through tactile feedback, whereas it is still a challenging task
for robots. In this research, we create a novel soft gripper named JamTac, which has high-resolution tactile
perception, a large detection surface, and integrated sensing-grasping capability that can search and grasp in
low-visibility environments. The gripper combines granular jamming and visuotactile perception technologies.
Using the principle of refractive index matching, a refraction-free liquid-particle rationing scheme is developed,
which makes the gripper itself to be an excellent tactile sensor without breaking its original grasping capability.
We simultaneously acquire color and depth information inside the gripper, making it possible to sense the
shape, texture, hardness, and contact force with high resolution. Experimental results demonstrate that JamTac
can be a promising tool to search and grasp in situations when vision is not available.

Keywords: soft robotics, jamming gripper, tactile sensing, universal grasping

Introduction

Grasping is one of the most important ways for people
and robots to interact with the world. Humans make

extensive use of multisensory feedback during grasping, in-
cluding visual and tactile sensing.1 Although vision is the
most important source of information, it is not so reliable and
becomes inefficient in low-visibility environments. On the
contrary, tactile sensing, just like proprioceptive sense,2 is
more robust and reliable compared to vision. Tactile per-
ception can provide accurate contact information such as

texture and force, which improves the grasping perfor-
mance.3 More importantly, tactile sensing plays a crucial role
in the grasping behavior when vision is lacked, such as in
dark night, turbid water, and dense smoke. In practice, there
is a vast demand for operations in low-visibility conditions,
for example, object salvage in muddy water, target searching
in fire disasters, valve manipulation in toxic gas leakage, and
so on. Working in those environments is typically hard and
dangerous. Therefore, it is of great significance to develop
robotic grippers that are capable of searching and grasping in
low-visibility environments.
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In the field of robotic grasping, while many research focus
on the use of computer vision to achieve object grasping,4–7

tactile sensors8–10 also have attracted enormous interest.
Tactile sensors can be divided into piezoresistive,11 capaci-
tive,12 inductive,13 etc. Although they have high accuracy for
force detection, the resolution for texture detection is usually
low. To improve the resolution, optical tactile sensors, in-
cluding soft marker-based optical tactile sensors and soft
reflection-based optical tactile sensors,14 have been pro-
posed, which use a built-in camera to obtain the deformation
information of the contact surface. This method has high
resolution, as well as low cost, making it suitable for large-
scale applications. Various optical tactile sensors have
emerged, such as GelForce,15 Digit,16 Gelsight,17 Omni-
tact,18 TacTip,19 and Insight.20 However, the detection area
of those sensors is small and the ductility of the surface sil-
icone film is poor, making it difficult to obtain the 3D contour
information for irregular objects.

Currently, tactile sensors have been applied to various
grippers, with most of them being rigid grippers.21–25 At
present, rigid grippers26–30 are widely used in the industrial
field due to their superior load capacity, high accuracy, and
durability. However, they have poor flexibility and might
cause harm to the object. On the contrary, soft grippers31–35

are highly flexible and allow safe interaction between robots
and the environments. But the integration of tactile sensors

with soft grippers is still a challenging task.36–39 There are
various types of soft grippers such as pneumatic elastomeric
grippers,40 electrostatic actuated grippers,41 shape memory
polymer driven grippers,42 and jamming grippers.43–46

Among them, the jamming gripper consists of a soft package
filled with particles and uses the jamming effect to change the
stiffness of the gripper to achieve gripping. Unlike the finger-
shaped gripper, jamming grippers have a relatively large
contact surface that can easily wrap the object, which greatly
reduces the planning work during grasping. Jamming grip-
pers have a broad application prospect from industrial ap-
plications47 to deep sea sampling.48

Integrating tactile sensing into jamming grippers is an in-
teresting research direction, where Ref.49 is the first to intro-
duce an optical tactile version of a particle jamming gripper.
However, for jamming grippers, the surface material should be
thin and flexible, making it extremely difficult to add a suitable
tactile sensor without affecting the grasping performance.
There are two possible ways to achieve this. The first is to add a
highly flexible electronic skin on its surface, such as the con-
ductive thermoplastic elastomer.50 In this way although the
gripper can have tactile perception, the added electronic com-
ponents will greatly degrade its gripping performance and the
complex wirings will also affect the durability of the gripper.

The second is to add a camera inside the gripper to observe
the deformation of the membrane to obtain tactile

FIG. 1. Basic principle of
JamTac. Color and depth
images are obtained simulta-
neously inside the gripper to
output tactile sensing infor-
mation.
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information, which does not affect the gripping performance.
However, in this way the internal particles will obstruct the
view of the camera, making the resolution extremely low.
Although a method has been proposed to make the interior
transparent using acrylic and mixed paraffin-silicone oil as
the filling material,51 the resolution is still far from satisfac-
tory. Besides, the selected mixture has poor fluidity and
contains impurities. Therefore, it still requires large im-
provement to achieve high-resolution tactile perception for
jamming grippers.

In this work, we leverage the visuotactile technology to
promote the tactile sensing capability of the jamming gripper
to a new level. We apply both RGB (red, green and blue)

color camera and depth camera inside the gripper, resulting in
the gripper JamTac as shown in Figure 1. JamTac differs
from other grippers/sensors in three main aspects. First, the
gripper has high-resolution tactile sensing capability com-
pared to other jamming grippers. This is achieved by adopt-
ing a novel mixture of liquid and particles with matched
refractive index as the internal filler, which is highly trans-
parent, fluidity-well, nontoxic, and noncorrosive. Second,
the gripper has integrated sensing and grasping capability. It
can feel and then grasp irregularly shaped objects easily by
pumping the liquid (Supplementary Movie S1). Third, the
gripper can obtain the 3D contour information of the object
through a single contact due to its wide and largely-

FIG. 2. The proposed gripper JamTac. (A) The structure of JamTac. (B) The layout of the LED plane. (C) The light path
inside the gripper. (D) The gripper attached to a UR5 robotic arm. (E) The gripper in sensing mode and the images from
cameras inside the gripper. (F) The gripper in grasping mode. (G) The underwater salvage equipment. (H) Using the
equipment to salvage in a river. (I) Using the equipment to operate in a sewer well with smoke.
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deformable membrane surface (Supplementary Movie S1),
which can be hardly achieved by other tactile sensors as far
as we know. All of the above features make JamTac an
excellent tool to facilitate searching and grasping tasks in
low-visibility environments.

Gripper Design

The fabrication process of JamTac can be found in Sup-
plementary Figure S1. Traditional jamming grippers are
composed of three main components, which are particles,
elastic film, and shell. To achieve high-quality tactile per-
ception, we make several delicate modifications. As shown in
Figure 2A, LEDs and cameras are added, and the internal
filler is replaced by a mixture of liquid and particles, which
looks highly transparent from the camera, and the inner side
of the elastic film is covered with silver reflective coatings.

Our goal is to design a jamming gripper with the sense of
shape, texture, hardness, and force. To achieve this, we have
been motivated from Gelsight,17 which is a soft reflection-

based optical tactile sensor with a high spatial resolution up to
1 micron. Gelsight uses an RGB camera, but it is highly
sensitive to depth by taking advantage of the photometric
stereo technique. However, unlike Gelsight, a jamming
gripper has highly flexible curved surface filled with particles
inside, preventing it from applying photometric stereo.
Therefore, we apply both RGB and depth cameras inside the
gripper. RGB camera has high resolution and fineness, which
is sensitive to information such as texture and shape of the
contact surface. While depth camera has low resolution, it
can reconstruct the 3D morphology of the gripper surface
(Supplementary Movie S2) and obtain information such as
3D contour, hardness, and force. Therefore, the combination
of depth camera and RGB camera can simultaneously
achieve shape/texture detection, hardness perception, and
force perception.

Our main concerns for the selection of the RGB camera are
waterproof performance, volume, and field of view. To better
detect the deformation of the gripper surface, the camera
needs to be immersed in the liquid, which puts severe

FIG. 3. Particles, solutions, and camera views. (A) Light rays pass through liquid with solid beads. As the refractive index
of the bead gets closer to that of the liquid, the light is less deflected and the bead becomes less visible. Particularly, when
n2 = n1, the bead becomes invisible. (B) The particles alone. Left to right: H-K9 glass, organic glass, high borosilicate glass,
super absorbent resin. (C) The mixture of particles and liquid. Left to right: 87.25% tetralin-ethanol solution and H-K9
glass, 12.4% engine oil-benzene solution and organic glass, p-cymene and organic glass, water and super absorbent resin,
59% NaI solution and high borosilicate glass, 59% NaI solution and high borosilicate glass with Na2S2O3 as a decolorizer.
(D) The RGB and depth images captured from inside the gripper when there is no liquid. (E) The RGB and depth images
from inside the gripper are clean when there is index-matching liquid.
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requirements on the waterproof performance of the camera.
In addition, the space in the gripper is very limited, and thus,
how to install both depth camera and color camera in it is an
important issue. Eventually, the RGB camera selected is a
120� wide-angle endoscopic camera with a resolution of
1920 · 1080, a frame rate of 30 fps. The diameter of this
camera is only 8.5 mm. It also has a good waterproof property
and can work in underwater high-pressure environments. The
depth camera selected is CamBoardpicoflexx with a size of
68 · 17 · 7.25 mm, which can be easily integrated into the
gripper. The highest frame rate of the depth camera can reach
45 fps, and the minimum detection range is 100 mm (the
distance between the depth camera and the bottom of the
balloon is 120 mm).

In addition to the cameras, the design of the elastic film of
the gripper is also one of the critical aspects that affect the
tactile sensing performance. Currently, most of the optical
tactile sensors use transparent glass with a layer of silicone,
which is easy to fabricate, but is less flexible and can hardly
adapt to objects with irregular shapes. Here an elastic latex film
with a silver reflective coating is adopted, which has better
reflectivity and results in more uniform internal lighting and a
clearer view of the textures. The film is very flexible with a
thickness of merely 0.25 mm, which enables it to sense tiny
texture information on the surface of the grasped object. Fur-
thermore, to improve the brightness and visual effect inside the
gripper, RGB LEDs of flat head and fog light are adopted. The
three LEDs are evenly spaced along a circle, and the brightness
of the light emitted by this type of LED is more uniform, which
can avoid the impact of traditional LED spotlighting.

Internal Filler Design

To allow the camera to observe the membrane deformation
clearly, we need to keep the internal filler of the gripper
transparent. While it is difficult for solid particles to be un-
seen in the air, making them ‘‘disappear’’ in liquid is possi-
ble. The key lies in the refractive index. If the refractive
indexes of the particles and the liquid are the same, then the
particles will be invisible.52

The refractive index is an inherent property of the material,
which is defined as the ratio of the propagation speed of light
in a vacuum to the propagation speed of light in the material
medium. The higher the refractive index of the material, the

greater the refraction of the transmitted light through the
material. Usually, the refractive index order is ‘‘solids >
liquids > gases.’’

Figure 3A shows light rays passing through liquid with
particle (both are transparent and have the same color), where
n1 represents the refractive index of the liquid and n2 denotes
the refractive index of the particle. When light is transmitted
from the liquid into the particle, refraction and reflection
happen at the particle’s surface because there is a difference in
refractive index. Therefore, we can notice that there is a par-
ticle because its edge is highlighted (due to reflection) and the
background behind the particle is distorted (due to refraction).
As the refractive index of the particle gets closer to that of the
liquid, the light is less deflected and the particle becomes less
visible. When the liquid and the particle have the same re-
fractive index, then no refraction or reflection occurs at the
interface, thus the particle appears to disappear. This phe-
nomenon is demonstrated in Supplementary Movie S3.

Particularly, if the liquid is a compound, then its refractive
index can be calculated using the Lorentz-Lorenz formula53:

n2� 1

n2þ 2
¼ +

N

i¼ 1

ui

n2
i � 1

n2
i þ 2

(1)

where n is the refractive index of the mixture, ni is the refractive
index of the i-th component, and ui is the volume fraction.
Using this formula, we can find a series of liquid-particle pairs
that have an equal refractive index (also called refractive index
matching) as shown in Table 1. They can serve as candidates
for the internal filler, and the defects are also listed in the table.

To obtain an internal filler that is stable, nontoxic, trans-
parent, and has good flow ability, we tested six of the re-
fractive index matching mixtures with the results shown in
Figure 3C. It can be observed that the mixtures are trans-
parent. However, as listed in Table 1, most of them have
problems such as dissolution, volatilization, discoloration,
and poor flow ability. For example, tetralin can dissolve or-
ganic materials such as elastic film, hoses, and pumps, thus
causing leakage; p-toluene and benzene can make the elastic
film swell, thus breaking the elasticity of the film; engine oil-
benzene solution has poor liquidity and is difficult to be ex-
tracted quickly through the pump; water and super absorbent
resin have no such problem, but the resin will become soft

Table 1. Liquid-Particle Pairs with Refractive Index Matching

Liquid material Particle material Refractive index Defect

Water Super absorbent resin 1.333 Particle is too soft
59% NaI solution High borosilicate glass 1.473 Oxidized to brown
59.37% tetrachloromethane-

tetrahydrofuran solution
Fluorine crown glass

(CDGM mark: FK-95
[http://www.cdgmgd.com/])

1.438 Generate virulent
phosgene

77.26% trichloromethane-
tetrahydrofuran solution

30.2% gasoline-benzene solution Barium fluoride 1.474 Dissolve rubber
film12.4% engine oil-benzene solution Organic glass 1.49

p-cymene Organic glass
43.99% tetralin-ethanol solution Fluorine crown glass (CDGM mark: H-FK95N) 1.438 Dissolve most

organics54.46% tetralin-ethanol solution Fluorine crown glass (CDGM mark: H-FK71) 1.457
76.64% tetralin-ethanol solution Fluorine crown glass (CDGM mark: H-FK61) 1.497
78% tetralin-ethanol solution Fluorine crown glass (CDGM mark: H-K1) 1.499
87.25% tetralin-ethanol solution Fluorine crown glass (CDGM mark: H-K9) 1.517
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after absorbing water, which will make the gripper lose the
ability to grasp. After comprehensive consideration, we fi-
nally chose the combination of 59% NaI solution and high
borosilicate glass as the filling materials.

The properties of NaI are similar to NaCl, but I- has
stronger reducibility, which is very easy to react with air and
produce I2. The process is as follows: 4NaIþO2þ
2H2O! 4 NaOHþ 2 I2. The generated I2 can make the
solution yellow and affect the transparency. To solve this
problem, we add Na2S2O3 which has stronger reducibility
to the solution to prevent the solution from oxidation. The
underlying mechanism can be shown as 2Na2S2O3þ I2 !
Na2S4O6þ 2 NaI.

Because the solution in the gripper is not in contact with
the outside air, we found adding 0.5% of Na2S2O3 can
maintain the solution in a colorless and transparent state for a
long time without changing the refractive index much.
Therefore, the final internal filler is a solution of 59% NaI
mixed with 0.5% Na2S2O3 and high borosilicate glass beads.

With this internal filler, Figure 3E shows the pictures from
inside the gripper obtained by the RGB and depth cameras.
As a comparison, we also show the pictures when there is no
liquid (Fig. 3D). It can be seen that the camera view becomes
clear and the particles are hidden when the particles are im-
mersed in the liquid, which verifies the feasibility of the in-
ternal filler design.

FIG. 4. Force sensing platform and method. (A) The autonomous force sensing platform. (B) Probes used for test with
different diameters. (C) Depth image processing workflow.
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Force Sensing Performance

Force sensing is an important aspect of tactile perception.
For soft grippers, it is usually hard to mount traditional force
sensors due to their flexible structure. However, a soft gripper
itself can act as a force-sensing component by measuring the
deformation during contact. For JamTac, which is composed
of liquid, particles, and elastic film, it is very difficult to build
an accurate force sensing model from First Principles.
Therefore, a neural network-based force sensing method is
proposed for JamTac. Since the contact status of the gripper is
well described by the depth image, it can be used as input to
train a force-sensing model.

The objects in real life usually have various shapes, and the
contact status with the gripper can be very complicated. To
simplify the problem, five cylindrical probes with different
diameters are adopted as the testing objects (Fig. 4B). Neural
network models are trained for each probe, which takes the
depth image as input and outputs the 3D contact force in-
formation, as well as the contact position. The raw images for
the experiments are given in Supplementary Data, and the
neural network training details for each task can be found in
Supplementary Table S1. We then test the trained model and
apply Gaussian fitting to the sensing error distribution (The
experimental process is shown in Supplementary Movie S4).
The position and force error distribution are given in
Figure 5A. It can be observed that the position error keeps
within 10 mm, and the force error maintains below 0.4 N.
Moreover, as the probe diameter increases from 5 to 15 mm

(the gripper membrane has a diameter of about 90 mm), the
force sensing performance is almost the same. As shown in
Figure 5B, the probabilities of position error in 6 mm and the
force error in 0.3 N are all above 95%. Moreover, the root
mean square errors (RMSEs) for the position and force
sensing are shown in Table 2.

Shape and Texture Recognition Performance

Compared to traditional jamming grippers, the main
advantage of JamTac is its high-resolution shape/texture
sensing capability. To test the performance, six objects with
different shapes and textures are used as shown in Figure 6A.
The corresponding RGB images obtained from inside the
gripper are shown in Figure 6B. It can be seen that the RGB
images show ultrahigh fidelity to the original objects. The noises

FIG. 5. Force sensing performance. (A) The position and force error distribution grouped by probe diameter. (B) The
probability of position and force error (total) in a small region grouped by probe diameter.

Table 2. Root Mean Square Errors

for the Position and Force Sensing

Probe diameter
(mm)

Position error
RMSE (mm)

Force error
RMSE (N)

5 3.363 0.160
7.5 2.638 0.138
10 2.949 0.174
12.5 3.227 0.172
15 2.500 0.130
Average 2.935 0.155

RMSE, root mean square error.
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FIG. 6. Shape and texture recognition task. (A) Objects used for testing. Left to right: cuboid prism with wavy texture,
cuboid prism with diagonal protrusions, cuboid prism with granular protrusions, triangular prism with wavy texture,
triangular prism with diagonal protrusions, triangular prism with granular protrusions. (B) RGB images from inside the
gripper when in contact with each object.

FIG. 7. Hardness identification task. (A) Experimental platform. (B) Hardness test material. Left to right: wood, foam,
sponge. (C) Depth images from the gripper in contact with objects of different hardness. Left to right: wood, foam, and
sponge.
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in the RGB images maintain at a low level, and we can easily
recognize the shape and texture from the image. It demonstrates
JamTac’s superior shape/texture sensing capability.

Furthermore, we also performed a classification task. The
GoogleNet classification network was used. The input of the
network is the RGB image from the gripper camera, and
the output is the type of the grasped object. Two hundred
images were collected for each object, resulting in 1200
images in total, where 240 of them were used as the test set.
After 40 rounds of training, the shape/texture recognition
accuracy achieved 98.8%, which validates the feasibility of
the gripper for shape and texture recognition.

Hardness Identification Performance

Hardness detection can help robots to evaluate the property
of the object and grasp the object more accurately. One
promising application field of hardness detection is nonde-
structive fruit firmness evaluation.54 The hardness of an object
can be estimated through the deformation produced when the

gripper contacts the object. Since the softer the object, the easier
it is to deform, a softer object will bend more in the process of
continuous downward pressure, which can be detected by the
depth camera. Using this phenomenon, an experiment is de-
signed to classify objects according to their hardness.

The tested objects are three cuboid substances made of
wood, foam, and sponge, respectively, as shown in Figure 7B.
The obtained depth images are given in Figure 7C. Since the
deformation of the three objects is different, the depth images
exhibit obvious differences. Similar to the previous experi-
ment, the classification of objects is achieved using Goo-
gleNet. In this experiment, 48 pictures were collected for
each object, resulting in a total of 144 pictures, 36 of which
were used as the test set. As a result, the success rate of
recognition reached 100%.

Autonomous Searching and Grasping Test

One main advantage of the proposed gripper compared to
the grippers using external vision is its effectiveness in low-

FIG. 8. The experimental process of the autonomous searching and grasping task. (A) The operation process. (B) The
gripper in the initial position. (C) The gripper touches and recognizes the object, which is not the target object. (D) The
gripper leaves the object and goes to the next detect position. (E) The gripper detects the target object. (F) The gripper
pumps out liquid and grasps the object. (G) The gripper places the object in a specified location.
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visibility environments, just like people can search and grasp
in the dark using their hands. To check the blind grasping
performance of JamTac, an autonomous searching and
grasping experiment is performed.

Five objects are selected in the experiment, including a
trepang model (soft model), a conch (specimen), a plug, a
pipe, and a bottle cap. Before the experiment, a classification
network was built based on GoogleNet. Two hundred images
were collected for each object, resulting in a total of 1000
images, where 200 of them were used as the test set. After
training, the classification accuracy achieved 99%. Then the
autonomous searching and grasping experiment was per-
formed based on the trained classification network.

The operation process of the gripper in this experiment is
shown in Supplementary Movie S5 and Figure 8. The process
is divided into four stages. In the first stage, the gripper is in
the initial position and slowly descends, using the classifi-
cation algorithm to check whether it touches the target object
during the descent. If the gripper detects no object, it moves
to the next position and continues searching until it detects an
object. In the second stage, the detected object will be clas-
sified. If it is the target object, it will be grasped. In the third
stage, the liquid in the gripper is pumped out so that the
gripper can hold the object firmly due to the jamming effect.
In the fourth stage, the grasped object will be transferred to a
specified location, and the liquid will be injected into the
gripper to recover it to the sensing mode.

The experimental results are given in Figure 9. Ten tests are
taken for each object. Among the total 50 experiments, 47 have
succeeded in both identification and grasping tasks, where 2
failures are due to identification and 1 failure is due to grasping.
The overall success rate is 94%, which proves the feasibility of
the gripper in searching and grasping through tactile perception.

Field Test

An important application of JamTac is grasping in low-
visibility environments, especially in turbid water. To test its

performance in real environments, a piece of handheld under-
water salvage equipment is developed as shown in Figure 10A.
In this equipment, JamTac is connected to a telescopic carbon
fiber stick through a Cardan joint. The diameter of the gripper
membrane is 10 cm, and the length of the stick is 55–160 cm.
The purpose of the Cardan joint is to allow the gripper to stay
upright when salvaging in a farther area (Fig. 10B). The
pumping devices and batteries are contained in a backpack.
Besides, a cell phone is mounted on the operator’s wrist, which
can show the real-time image from the RGB camera inside the
gripper through Wi-Fi. And an radio-frequency wireless push
button switch in the operator’s hand can control the grasping and
releasing operation of the gripper. The entire equipment is
portable, which can be carried and operated by a single person
conveniently.

With this equipment, two underwater salvage experiments
were carried out (Supplementary Movies S6, S7, and Fig. 10C).
One was performed in a pool, and the other in a sewer well. A
screwdriver was used for the test. The screwdriver was thrown
into the water, and then the operator started searching with the
equipment around the falling area. As shown in Figure 10C, the
object can be seen clearly when it is detected. Once making sure
that the object is in firm contact with the gripper, the operator
pressed the button to grasp the object. It should be noted that the
water is turbid in both cases where the sunk object cannot be
observed through the water at all. Both experiments succeeded,
which validate the feasibility of JamTac in real applications. As
far as we know, this might be the first tactile gripper that has
been successfully applied in turbid water salvage.

Conclusion

A tactile jamming gripper with high-resolution tactile
sensing capability is proposed, which uses the principle of
jamming particles and vision-based tactile detection tech-
nology. To improve the perception accuracy of the gripper,
we innovatively design the gripper from many aspects, in-
cluding the method of acquiring tactile information, the

FIG. 9. The success rate of recognition and
grasping.
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FIG. 10. Underwater salvage equipment and experiments. (A) Field test equipment. 1: The handheld underwater salvage
equipment carried by a person. 2: The backpack contains batteries, liquid pumping devices, an RF module, and a Wi-Fi
module. 3: Telescopic carbon fiber stick. 4: Cardan joint. 5: JamTac. 6: Two-button 433 MHZ wireless RF switch. 7: Cell
phone in the holder. (B) Usage of the equipment. (C) Underwater salvage experiments. 1: A close view of the pool. 2:
Underwater salvage in the pool. 3: Pool salvage done. 4: A close view of the sewer well. 5: Underwater salvage in the sewer
well. 6: Sewer salvage done.
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internal padding of the gripper, the material of the elastic
membrane, and the internal optics. Compared with other
existing grippers, the presented gripper not only has excellent
grasping ability but also has multiple-source perception ca-
pability of force, shape, texture, and hardness.

Experimental results show that the force perception
accuracy of JamTac is about 0.155 N (RMSE), the shape/
texture recognition accuracy achieves 98.8%, and the hard-
ness detection accuracy achieves 100%. The gripper also
reaches an overall success rate of 94% in the autonomous
searching and grasping experiment. The results indicate that
JamTac has achieved high-quality tactile perception.

The underwater salvage experiments in real environments
show a promising application field for JamTac. However, we
also found some problems that need to be improved in the future.
First, the grasping speed is slow now. Using a high-speed pump
may solve this problem. Second, JamTac is more suitable for
grasping objects on a flat and hard surface. Improving its effi-
ciency in more complicated environments such as silt is of great
value. Third, JamTac cannot grasp objects suspended in water.
This may be solved using a pair of grippers to work as a jaw.
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